433 research outputs found

    Supercritical-fluid synthesis of FeF2 and CoF2 Li-ion conversion materials

    Get PDF
    The synthesis of the Li-ion conversion candidates, FeF2 and CoF2, obtained from the single source organometallic precursors [Fe(tta)3] (tta = C8H4F3O2S), and [Co(hfac)2[middle dot]2H2O] (hfac = C5H1F6O2), respectively, via a novel supercritical fluid (SCF) method is presented. The nature of the synthesis led to highly-crystalline FeF2 and CoF2 powders requiring no additional thermal treatment. The as-obtained powders were investigated for use as potential positive Li-ion conversion electrodes by means of chronopotentiometric measurements. The FeF2 cells displayed high initial capacities following electrochemical conversion (up to [similar]1100 mA h g-1 at a potential of 1.0 V vs. Li/Li+), with appreciable cyclic behaviour over 25 discharge-charge cycles. The deposition of a [similar]5 nm layer of amorphous carbon onto the surface of the active material following SCF treatment, likely facilitated adequate electron transport through an otherwise poorly conducting FeF2 phase. Similarly, CoF2 cells displayed high initial capacities (up to [similar]650 mA h g-1 at a potential of 1.2 V vs. Li/Li+), although significant capacity fading ensued in the subsequent cycles. Ex situ XRD measurements confirmed a poor reversibility in the conversion sequence for CoF2, with a complete loss of CoF2 crystallinity and the sole presence of a crystalline LiF phase following charging

    Ultrasonic technology applied against mosquito larvae

    Get PDF
    The effective management of mosquito vectors is a timely challenge for medical and veterinary entomology. In this study, we evaluated the acoustic Larvasonic device to control young instars of the mosquito Aedes aegypti in diverse freshwater environments. Under laboratory conditions, we investigated the effect of exposure time and distance from the transducer on the mortality of larvae and pupae of Ae. aegypti. Furthermore, we evaluated the effectiveness of the ultrasound window of the electromagnetic spectrum under different field conditions. Results showed that first and second instar larvae were more sensitive to the frequency range of 18-30 kHz of the Larvasonic device. Ultrasonic waves applied for 180 s at a frequency from 18 to 30 kHz caused 100% larval mortality at a distance of 60 cm from the transducer. No mortality was observed in the non-target copepod Megacyclops formosanus. The exposure to the soundwaves produced by the acoustic larvicidal device over different distances effectively damaged Ae. aegypti through destruction of the larval dorsal tracheal trunk, thorax and abdomen. Overall, results indicated that the Larvasonic device tested can provide an alternative tool to reduce young instar populations of Ae. aegypti, without any effects on non-target aquatic invertebrates like copepods. It turned out to be a useful device for mosquito biocontrol. This technology has a relevant potential to fight the spread of mosquito-borne diseases

    Diagnostic tools in diagnosing acute appendicitis - Alvarado Score, CRP, USG, and CT (Abdomen)

    Get PDF
    Aims. To evaluate scope of diagnosing tools-Alvarado score, CRP, USG, and CT in acute appendicitis. Method. Conducted observational study of 152 patients in Department of Emergency Medicine, Sri Ramachandra Medical College and Research Institute, Chennai, India between January to December 2022. The diagnostic tool’s (Alvarado score, CRP, USG, CT (abdomen), sensitivity, specificity, accuracy, and ROC were analyzed to diagnose acute appendicitis. Results. Among 152 study patients, males - 86, females - 66, higher number of age group was <30 years, abnormal variables in study patients are BP - 79%, HR - 80%, RFP pain - 57%, anoxia - 78%, nausea/ vomiting - 68%, RIF tenderness - 69%, rebound tenderness - 63.8%, elevated temperature - 62%, pain - 44.7%, leukocytosis - 70.7%, and left shift - 38.2%. In comparison, Alvarado scores-identified 98% patients, (7-61.2%) (0.0271), CRP - identified 95.1% (<0.001), USG identified (group 1-33%, group 2-12.2%, group 3-11.3%, and group 4-43.5%, and CT identified 152/152 (100%) patients with acute appendicitis. The odds ratio/95% CI of diagnostic tools (USG - 0.878, 0.66, CRP - 7.337, 2.623, Alvarado score - 0.81, 0.687). Sensitivity (Alvarado's score - 84.74%, USG - 83.33%, CRP - 76.43%), and specificity was (Alvarado's score - 84.32, USG - 72.97%, CRP-83.86%. The PPV (Alvarado's score - 74.56%, USG -75.5%, CRP - 33.16%), NPV (Alvarado's score - 32.5%, USG - 79.1%, CRP - 81.03%), and diagnostic accuracy (Alvarado's score - 72.01%, USG - 73.05%, CRP - 68.81%). ROC in individual tools-Alvarado score was specific than USG, and CRP. ROC in combination tools Alvarado score and USG was specific than USG, and CRP. Conclusion. Among the diagnostic tools tested, as individual tool-Alvarado score was specific, in combination, and Alvarado score and USG were accurate, specific, sensitive, hence combination of tools will identify acute appendicitis early to reduce mortality by undiagnosed or late diagnosed

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Agronomic biofortification of zinc in rice for diminishing malnutrition in South Asia

    Get PDF
    Zinc (Zn) is increasingly recognized as an essential trace element in the human diet that mediates a plethora of health conditions, including immune responses to infectious diseases. Interestingly, the geographical distribution of human dietary Zn deficiency overlaps with soil Zn deficiency. In South Asia, Zn malnutrition is high due to excessive consumption of rice with low Zn content. Interventions such as dietary diversification, food fortification, supplementation, and biofortification are followed to address Zn malnutrition. Among these, Zn biofortification of rice is the most encouraging, cost-effective, and sustainable for South Asia. Biofortification through conventional breeding and transgenic approaches has been achieved in cereals; however, if the soil is deficient in Zn, then these approaches are not advantageous. Therefore, in this article, we review strategies for enhancing the Zn concentration of rice through agronomic biofortification such as timing, dose, and method of Zn fertilizer application, and how nitrogen and phosphorus application as well as crop establishment methods influence Zn concentration in rice. We also propose data-driven Zn recommendations to anticipate crop responses to Zn fertilization and targeted policies that support agronomic biofortification in regions where crop responses to Zn fertilizer are high

    Yield and Economic Performance of Organic and Conventional Cotton-Based Farming Systems – Results from a Field Trial in India

    Get PDF
    The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007–2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1st crop cycle (cycle 1: 2007–2008) for cotton (229%) and wheat (227%), whereas in the 2nd crop cycle (cycle 2: 2009–2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (21% in cycle 1, 211% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of cotton and wheat, and the ecological impact of the different farming systems

    Novel magnetite nanoparticles coated with waste sourced bio- based substances as sustainable and renewable adsorbing materials

    Get PDF
    This study examines the possibility of using bio-based product isolated from urban solid wastes as a material for environmental technological applications. To this end, Fe3O4 nanoparticles coated with different amounts of soluble bio-based products (SBO) were synthesized as low-cost nanoadsorbent for the removal of pollutants in wastewater. Particles of 10 nm diameter with Fe3O4 core and SBO shell were obtained. The concentration of SBO employed in the synthesis had no effect on the size and structure of the NPs, but ruled the pHPZC and aggregation of the nanoparticles in water. The cationic dye crystal violet (CV) was used as a model pollutant to test the adsorption capacity of the nanoparticles. The results indicated that both the medium pH and NP dosage were significant parameters to enhance the removal of CV. The results contribute to the studies which show how wastes can become a source of revenue through the industrial exploitation of their chemical value.Fil: Magnacca, Giuliana. Università di Torino; ItaliaFil: Allera, Alex. Università di Torino; ItaliaFil: Montoneri, Enzo. Università di Torino; ItaliaFil: Celi, Luisella. Università di Torino; ItaliaFil: Benito, Damián Ezequiel. Universidad Nacional de La Plata. Laboratorio de Investigación y Desarrollo de Métodos Analíticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gagliardi, Leonardo Gabriel. Universidad Nacional de La Plata. Laboratorio de Investigación y Desarrollo de Métodos Analíticos; ArgentinaFil: Martire, Daniel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Gonzalez, Monica Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Carlos, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    IL-24 Inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis

    Get PDF
    © 2015 Panneerselvam et al. Background The stromal cell derived factor (SDF)-1/chemokine receptor (CXCR)-4 signaling pathway plays a key role in lung cancer metastasis and is molecular target for therapy. In the present study we investigated whether interleukin (IL)-24 can inhibit the SDF-1/CXCR4 axis and suppress lung cancer cell migration and invasion in vitro. Further, the efficacy of IL-24 in combination with CXCR4 antagonists was investigated. Methods Human H1299, A549, H460 and HCC827 lung cancer cell lines were used in the present study. The H1299 lung cancer cell line was stably transfected with doxycycline-inducible plasmid expression vector carrying the human IL-24 cDNA and used in the present study to determine the inhibitory effects of IL-24 on SDF-1/CXCR4 axis. H1299 and A549 cell lines w ere used in transient transfection studies. The inhibitory effects of IL-24 on SDF1/CXCR4 and its downstream targets were analyzed by quantitative RT-PCR, western blot, luciferase reporter assay, flow cytometry and immunocytochemistry. Functional studies included cell migration and invasion assays. Principal Findings Endogenous CXCR4 protein expression levels varied among the four human lung cancer cell lines. Doxycycline-induced IL-24 expression in the H1299-IL24 cell line resulted in reduced CXCR4 mRNA and protein expression. IL-24 post-transcriptionally regulated CXCR4 mRNA expression by decreasing the half-life of CXCR4 mRNA ( > 40%). Functional studies showed IL-24 inhibited tumor cell migration and invasion concomitant with reduction in CXCR4 and its downstream targets (pAKTS 473 , pmTORS 2448 , pPRAS40 T246 and HIF-1α). Additionally, IL-24 inhibited tumor cell migration both in the presence and absence of the CXCR4 agonist, SDF-1. Finally, IL-24 when combined with CXCR4 inhibitors (AMD3100, SJA5) or with CXCR4 siRNA demonstrated enhanced inhibitory activity on tumor cell migration. Conclusions IL-24 disrupts the SDF-1/CXCR4 signaling pathway and inhibits lung tumor cell migration and invasion. Additionally, IL-24, when combined with CXCR4 inhibitors exhibited enhanced anti-metastatic activity and is an attractive therapeutic strategy for lung metastasi
    • …
    corecore